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Many of the most impactful applications of robotics (e.g.,
autonomous driving, assisted living, robotic surgery, etc.) are
safety-critical; that is, robots in these domains must be able
to reliably complete human-specified tasks while obeying
hard safety constraints. Traditional motion planners [25] can
achieve this if the robot state is perfectly known, the envi-
ronment is accurately modeled, and the task is unambiguous.
However, in reality, we need our robots to operate with
noisy sensors in unstructured environments where tasks may
be temporally-extended and vaguely-specified. To succeed in
these difficult scenarios, robots must rely on data to refine their
understanding of their environments and tasks. This often takes
the form of learned models in the autonomy stack, e.g., learned
perception systems [21], dynamics models [17], task specifica-
tions [19], and controllers [26]. However, since data is limited,
these learned models are often inaccurate and unreliable, and
blindly trusting them can cause catastrophe (e.g., fatal self-
driving car crashes [1, 32]). To avoid such tragedies, we must
verify that behaviors planned by the robot will safely complete
the task. However, not all task representations and models are
easily amenable to safety verification, and existing techniques
have yet to scale to analyze modern deep-learning-based
models within the autonomy loop, which has interconnections
that cause errors to propagate and accumulate.

My goal is to close this gap so that robots can use learned
models across all levels of the autonomy stack while guar-
anteeing end-to-end safety and robustness. More specifically,
my research is motivated by the following two questions. First,
how can robots learn task representations that can define and
enable safe behavior (i.e., hard constraints)? Second, how can
robots use the learned tasks and models in a way that remains
robust to uncertainty and error, guaranteeing safety and task
completion for the entire robot autonomy pipeline at runtime?

I. COMPLETED WORK

To begin to answer these questions, I will go over my work
so far on 1) learning task constraints from demonstrations, and
on using the uncertainty in the learned task to compute safer
plans (Sec. I-A), and 2) certifying safety and robustness with
learned perception modules, dynamics, and controllers in the
autonomy loop (Sec. I-B). See Fig. 1 for a map of my work.

A. Learning constrained task specifications

1) Overview: Task specification is a critically-understudied
aspect of safe autonomy – without an unambiguous description
of the set of truly safe, task-completing behaviors, a notion of
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Fig. 1. This diagram summarizes my work on certifying the end-to-end
safety and robustness of a robot autonomy pipeline with learned components.

safety and robustness cannot even be defined. To this end, I
design algorithms that guarantee safety and task completion
when planning with uncertain, learned task specifications.

Consider a robot with state x, control u, and known dynam-
ics xt+1 = f(xt, ut). To find a plan ξ = (x1, u1, x2, . . .) that
safely completes a task, that task must be concretely specified,
often as a (time-dependent) set of constraints gt(xt, ut) ≥ 0.
However, it is difficult for humans to specify gt(·, ·) explicitly;
it is more natural to describe the task through demonstrations
(e.g., physically [2] or via virtual reality [35]). Then, to safely
generalize to similar tasks, the robot must learn the task
constraints gt(·, ·) that are implicit in the demonstrations.

This problem is closely related to inverse optimal con-
trol (IOC) [22]. IOC assumes that the demonstrator solves
minξ c(ξ), where the cost function c(ξ) encodes the task,
and aims to learn c(ξ) from optimal solutions. The cost c(ξ)
softens the hard task constraints (e.g., it penalizes collisions
instead of avoiding them altogether), which can lead to unsafe
behavior when planning with the learned cost function [12].

2) Methods: To instead enforce safety by construction, I
develop novel algorithms that explicitly learn the hard task
constraints gt(·, ·). In contrast to IOC, I assume the demon-
strator solves a constrained problem, ming(ξ)≥0 c(ξ). The crux
of this problem relies on learning what not to do (i.e., unsafe
behavior) using only safe examples – we do not want unsafe
behavior to be executed just to simplify the learning. I achieve
this via the core insight that the demonstrations’ approximate
optimality (e.g., following the shortest or minimum energy
feasible trajectory to the goal) implicitly defines what the robot
should not do, i.e., trajectories that achieve a lower cost than
the demonstration must violate the unknown task constraint.
After learning, our method can generate new safe plans by
optimizing trajectories subject to the learned constraint.

Assuming approximately globally-optimal demonstrations, I
develop a sampling-based method for learning unknown, time-
independent task constraints [7, 8, 12]. I relax this assumption
in [10, 16] via the Karush-Kuhn-Tucker (KKT) conditions
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Fig. 2. Using the methods in Sec. I-A, we learn these constrained tasks:
(Top left) quadrotor collision avoidance (in sim); (Top right) multi-step Kuka
bartender task (in sim); (Bottom) multi-step Kuka delivery task (real world).

[6] – a notion of local demonstrator optimality; thus, after
learning the task constraints, the robot can improve relative
to the demonstrator. I have also explored suboptimality due
to partial information [23]. I have explored grid [7, 12],
parametric [8, 10], and nonparametric [16] constraint rep-
resentations; each trades off expressiveness, scalability, and
data-efficiency. In [11, 14], I extend these ideas to learn time-
dependent constraints in the form of linear temporal logic
(LTL) formulas, which can represent complex, multi-stage
tasks. Finally, in [9], I tackle the issue of non-uniqueness –
in general, many constraints can explain the demonstrations.
My previous work tries to satisfy all possible constraints in
planning, but this is overly conservative. To address this, [9]
explicitly quantifies this constraint uncertainty by forming
a belief over constraints and updating it with online data,
iteratively computing probabilistically-safe plans that enable
eventual task completion.

3) Results: My methods learn a broad class of manipulation
and navigation tasks from demonstrations, including quadrotor
obstacle avoidance, a multi-step 7DOF arm robot bartending
task, and a multi-step 7DOF arm object delivery task (Fig.
2). Moreover, planning with these learned constraints leads to
safe task completion at runtime.

B. Planning safely with learned models

1) Overview: Here, I seek to guarantee safety through the
combined perception, planning, and control pipeline, when the
perception module, dynamics, and controller are learned and
represented as neural networks. The core challenges here lie in
1) bounding how the error in the learned models accumulates
and degrades the tracking ability of the learned controller, and
2) how to use this bound together with the learned models
to plan towards some goal while guaranteeing that the true
system can be safely stabilized around this plan at runtime.

This problem is by no means entirely new. Robust control
[37, 31] and feedback motion planning [34, 28, 33] can bound
the effect of model error on trajectory tracking, but require a
priori known error bounds which are difficult to obtain when
the model is a neural network. Other work in safe learning-
based control generally requires perfect state feedback [30, 5],
a priori known stabilizing controllers [3], assumed accuracy
of model error bounds [20, 4], or full state-invertibility from
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Fig. 3. Planning safely
with learned models (Sec.
I-B). (A): nonholonomic
car safely stabilizing
around a plan via RGB-D
image-based feedback
control. Top: environment;
middle: executed/planned
trajectory; bottom: runtime
observations. (B): 22D rope:
safe steering to the goal via
state feedback.

observations [18]. To my knowledge, my method is the first to
certify safety for a learning-enabled autonomy pipeline from
rich observations (e.g., images) down to low-level control.

2) Methods: My core insight is that to guarantee safety
in the face of unreliable learned dynamics and perception
modules, the method must infer where the models can be
trusted, and to what extent. In [24, 13, 15], my method first
bounds the model error in a domain around the training data
by estimating its Lipschitz constant; I call this the “trusted
domain”. My method propagates these error bounds (for both
the dynamics and perception) through a state estimator and
feedback controller based on contraction theory [29, 27] to
derive a certified tracking error bound. This bound can guide
a planner to remain in low-error parts of the “trusted domain”,
leading to plans that can be safely tracked when using RGB-D
images and a learned perception module in the control loop.

3) Results: I demonstrate these methods in simulation on a
variety of systems, including a nonholonomic car (Fig. 3.A),
demonstrating that my method safely and reliably steers the
system to the goal using RGB-D sensor measurements. Using
state feedback, I also demonstrate that my method can solve
a highly-underactuated 22D deformable object manipulation
task (Fig. 3.B). In all of these examples, my method results
in safe behavior at runtime, whereas baseline approaches that
exit the “trusted domain” are often unsafe.

II. FUTURE WORK

Moving forward, I am interested in combining our
constraint-learning (Sec. I-A) and safe learning-based planning
methods (Sec. I-B) to guarantee safety using unreliable per-
ception models, dynamics, controllers, and task specifications.
Combining these methods can also enable the learning of task
constraints from rich observations under uncertain dynamics.

I also believe that my safe learning-based planning methods
(Sec. I-B) can be improved via adaptation. For instance, by
leveraging online data, we may be able to tighten the track-
ing error bounds, enabling the execution of more aggressive
maneuvers. Adaptation can also be achieved via replanning;
extending to this setting requires carefully considering recur-
sive feasibility and a more computationally-efficient planner.

Finally, I want to extend my work on safe perception-based
control (Sec. I-B) to handle real images. The key challenge
lies in accurately bounding the perception error from limited
real data; this can be achieved by quantifying the sim-to-real
gap [36] and bounding its effect on the perception system.



REFERENCES

[1] Evan Ackerman. Fatal tesla self-driving car
crash reminds us that robots aren’t perfect,
Jun 2021. URL https://spectrum.ieee.org/
fatal-tesla-autopilot-crash-reminds-us-that-robots-arent-perfect.

[2] Baris Akgün, Maya Cakmak, Jae Wook Yoo, and An-
drea Lockerd Thomaz. Trajectories and keyframes for
kinesthetic teaching: a human-robot interaction perspec-
tive. In HRI, pages 391–398. ACM, 2012.

[3] Felix Berkenkamp, Riccardo Moriconi, Angela P Schoel-
lig, and Andreas Krause. Safe learning of regions of
attraction for uncertain, nonlinear systems with gaussian
processes. In CDC, pages 4661–4666, 2016.

[4] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoel-
lig, and Andreas Krause. Safe model-based reinforce-
ment learning with stability guarantees. In Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages
908–918, 2017.

[5] Nicholas M. Boffi, Stephen Tu, Nikolai Matni, Jean-
Jacques E. Slotine, and Vikas Sindhwani. Learning
stability certificates from data. CoRL, 2020.

[6] Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, New York, NY,
USA, 2004. ISBN 0521833787.

[7] Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learn-
ing constraints from demonstrations. Workshop on the
Algorithmic Foundations of Robotics (WAFR), 2018.

[8] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Learn-
ing parametric constraints in high dimensions from
demonstrations. In Conference on Robot Learning
(CoRL), 2019.

[9] Glen Chou, Necmiye Ozay, and Dmitry Berenson.
Uncertainty-aware constraint learning for adaptive safe
motion planning from demonstrations. In Conference on
Robot Learning (CoRL), 2020.

[10] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Learn-
ing constraints from locally-optimal demonstrations un-
der cost function uncertainty. IEEE Robotics and Au-
tomation Letters (RA-L), 2020.

[11] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Ex-
plaining multi-stage tasks by learning temporal logic
formulas from suboptimal demonstrations. In Robotics:
Science and Systems (RSS), 2020.

[12] Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learn-
ing constraints from demonstrations with grid and para-
metric representations. International Journal of Robotics
Research (IJRR), 2021.

[13] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Model
error propagation via learned contraction metrics for safe
feedback motion planning of unknown systems. IEEE
Conference on Decision and Control (CDC), 2021.

[14] Glen Chou, Necmiye Ozay, and Dmitry Berenson. Learn-
ing temporal logic formulas from suboptimal demon-

strations: theory and experiments. Autonomous Robots
(AuRo), 2022.

[15] Glen Chou, Necmiye Ozay, and Dmitry Berenson.
Safe output feedback motion planning from images via
learned perception modules and contraction theory. In
Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2022.

[16] Glen Chou, Hao Wang, and Dmitry Berenson. Gaus-
sian process constraint learning for scalable chance-
constrained motion planning from demonstrations. IEEE
Robotics and Automation Letters (RA-L), 2022.

[17] Kurtland Chua, Roberto Calandra, Rowan McAllister,
and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. In
NeurIPS, pages 4759–4770, 2018.

[18] Sarah Dean, Andrew J. Taylor, Ryan K. Cosner, Ben-
jamin Recht, and Aaron D. Ames. Guaranteeing safety
of learned perception modules via measurement-robust
control barrier functions. In Conference on Robot Learn-
ing (CoRL), volume 155 of Proceedings of Machine
Learning Research, pages 654–670. PMLR, 2020.

[19] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided
cost learning: Deep inverse optimal control via policy
optimization. In ICML, volume 48 of JMLR Workshop
and Conference Proceedings, pages 49–58, 2016.

[20] Jaime F. Fisac, Anayo K. Akametalu, Melanie N.
Zeilinger, Shahab Kaynama, Jeremy H. Gillula, and
Claire J. Tomlin. A general safety framework for
learning-based control in uncertain robotic systems.
IEEE Trans. Autom. Control., 64(7):2737–2752, 2019.

[21] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock.
Differentiable particle filters: End-to-end learning with
algorithmic priors. In Robotics: Science and Systems,
2018.

[22] R. E. Kalman. When is a linear control system optimal?
Journal of Basic Engineering, 86(1):51–60, Mar 1964.

[23] Craig Knuth, Glen Chou, Necmiye Ozay, and Dmitry
Berenson. Inferring obstacles and path validity from
visibility-constrained demonstrations. In Workshop on
the Algorithmic Foundations of Robotics (WAFR), 2020.

[24] Craig Knuth, Glen Chou, Necmiye Ozay, and Dmitry
Berenson. Planning with learned dynamics: Probabilistic
guarantees on safety and reachability via lipschitz con-
stants. IEEE Robotics and Automation Letters (RA-L),
2021.

[25] Steven LaValle. Planning algorithms. Cambridge uni-
versity press, 2006.

[26] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
J. Mach. Learn. Res., 17:39:1–39:40, 2016.

[27] Winfried Lohmiller and Jean-Jacques E. Slotine. On
contraction analysis for non-linear systems. Autom., 34
(6):683–696, 1998.

[28] Anirudha Majumdar and Russ Tedrake. Funnel libraries
for real-time robust feedback motion planning. IJRR, 36
(8):947–982, 2017.

https://spectrum.ieee.org/fatal-tesla-autopilot-crash-reminds-us-that-robots-arent-perfect
https://spectrum.ieee.org/fatal-tesla-autopilot-crash-reminds-us-that-robots-arent-perfect


[29] Ian R. Manchester and Jean-Jacques E. Slotine. Control
contraction metrics: Convex and intrinsic criteria for
nonlinear feedback design. IEEE Trans. Autom. Control.,
62(6):3046–3053, 2017.

[30] Gaurav Manek and J. Zico Kolter. Learning stable deep
dynamics models. In NeurIPS, pages 11126–11134,
2019.

[31] Ian M Mitchell, Alexandre M Bayen, and Claire J
Tomlin. A time-dependent hamilton-jacobi formulation
of reachable sets for continuous dynamic games. TAC,
50(7):947–957, 2005.

[32] David Shepardson. U.s. identifies 12th tesla autopilot
car crash involving emergency vehicle, Sep 2021. URL
https://www.reuters.com/business/autos-transportation/
us-identifies-12th-tesla-assisted-systems-car-crash-involving-emergency-vehicle-2021-09-01/.

[33] Sumeet Singh, Benoit Landry, Anirudha Majumdar, Jean-
Jacques E. Slotine, and Marco Pavone. Robust feedback
motion planning via contraction theory. 2019.

[34] Russ Tedrake. Lqr-trees: Feedback motion planning on
sparse randomized trees. Robotics: Science and Systems
V, 2009.

[35] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee,
Xi Chen, Ken Goldberg, and Pieter Abbeel. Deep
imitation learning for complex manipulation tasks from
virtual reality teleoperation. In ICRA, pages 1–8. IEEE,
2018.

[36] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Wester-
lund. Sim-to-real transfer in deep reinforcement learning
for robotics: a survey. In 2020 IEEE Symposium Series
on Computational Intelligence, SSCI, pages 737–744.
IEEE, 2020.

[37] Kemin Zhou and John Comstock Doyle. Essentials of
robust control. 1998.

https://www.reuters.com/business/autos-transportation/us-identifies-12th-tesla-assisted-systems-car-crash-involving-emergency-vehicle-2021-09-01/
https://www.reuters.com/business/autos-transportation/us-identifies-12th-tesla-assisted-systems-car-crash-involving-emergency-vehicle-2021-09-01/

	Completed Work
	Learning constrained task specifications
	Overview
	Methods
	Results

	Planning safely with learned models
	Overview
	Methods
	Results


	Future Work

