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Abstract—We propose a method for learning constraints
represented as Gaussian processes (GPs) from locally-optimal
demonstrations. Our approach uses the Karush-Kuhn-Tucker
(KKT) optimality conditions of the demonstrations to determine
the location and shape of the constraints, and uses these to train a
GP which is consistent with this information. We demonstrate our
method on a 12D quadrotor constraint learning problem, showing
that the learned constraint is accurate and can be used within a
kinodynamic RRT to plan probabilistically-safe trajectories.

I. INTRODUCTION AND RELATED WORK

The need for robots that can safely perform tasks in un-
structured environments has increased as robots are deployed
in the real world. One popular paradigm for teaching robots
tasks is learning from demonstration (LfD) [3, 1, 2] via Inverse
Optimal Control (IOC), which assumes the demonstrator is
solving an unconstrained optimization, and learns the underly-
ing reward/cost function. However, hard constraints are crucial
for safety-critical applications and are not well-enforced by
these methods. To address safety in LfD, recent work has
represented tasks as constrained optimization problems, and
learns the unknown cost function and constraints from demon-
strations [9, 7, 6, 17, 11], enabling the learning of complex
tasks in manipulation and mobile robotics. However, these
methods require that the unknown constraints can be described
by a known representation (i.e. as a union of axis-aligned
boxes), restricting these methods to learning highly-structured
tasks. Moreover, such representations can be highly inefficient
(e.g. many boxes may be required to approximate complex
constraints), leading to a computational burden which makes
it challenging to scale these methods up to learn realistic
constraints. We address these issues via the insight that the
Karush-Kuhn-Tucker (KKT) optimality conditions provide in-
formation on the location and shape of the unknown constraint
which can be embedded in a Gaussian process (GP) constraint
representation, requiring minimal a priori knowledge on the
underlying constraint structure. Our contributions are:
• We show how to learn a GP constraint that is consistent

with the location/shape data given by the KKT conditions.
• We show how the learned GP constraint and its uncer-

tainty can be used to compute probabilistically-safe plans.
• We evaluate our method on a complex nonlinear con-

straint learning problem on a 12D quadrotor system,
showing that our method outperforms baselines.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Demonstrator’s problem and KKT optimality conditions
We represent a demonstration of a task σ performed on a

system xt+1 = f(xt, ut, t), x ∈ X , u ∈ U as a constrained
optimization over state/control trajectories ξxu

.
= (ξx, ξu):

Problem 1 (Forward (demonstrator’s) problem / task σ).
minimize

ξxu
c(ξxu)

subject to φ(ξxu) ∈ S(θ) ⊆ C ⇔ g¬k(ξxu, θ) ≤ 0
φ̄(ξxu) ∈ S̄ ⊆ C̄, φσ(ξxu) ∈ Sσ ⊆ Cσ
⇔ hk(ξxu) = 0, gk(ξxu) ≤ 0

where c(·) is known, φ(·) maps from trajectories to a con-
straint space C (where the constraint is evaluated) containing
constraint states κ ∈ C. The safe set S(θ), defined by θ ∈ Θ,
is unknown to the learner. φ̄(·) and φσ(·) map to constraint
spaces C̄ and Cσ , containing a known shared safe set S̄ and
task-dependent safe set Sσ . We encode the dynamics in S̄ and
the start/goal constraints in Sσ . We group the constraints of
Prob. 1 as (in)equality (ineq/eq) and (un)known (¬k/k), where
hk(ξxu)∈RN eq

k , gk(ξxu)∈RN ineq
k , and g¬k(ξxu, θ)∈RN

ineq
¬k . We

focus on scalar time and parameter-separable constraints

g¬k(ξloc
j , θ) ≤ 0 ⇔ g¬k(φ(xt)) ≤ θ, ∀t = 1, . . . , T. (1)

where we abuse notation and refer to φ(·) as its time-separable
counterpart. Handling time-dependent constraints (e.g. tem-
poral logic formulas [10]) is a direction for future work.
As in [9, 8], θ is an offset that defines a safe sublevel set.
However, unlike previous work, we crucially do not assume
the nonlinear part of the constraint g¬k(φ(xt)) is known; we
instead represent it as a GP and learn it jointly with θ. We
assume each state-control demonstration ξloc solves Prob. 1 to
local optimality, satisfying Prob. 1’s KKT conditions [4] (see
Sec. V for discussion on the case where this fails to hold).
With Lagrange multipliers λ, ν, the relevant KKT conditions
for the jth demonstration ξloc

j , denoted KKT(ξloc
j ), are:

Primal feasibility: g¬k(ξloc
j , θ) ≤ 0, (2a)

Lagrange mult. λji,k ≥ 0, i = 1, ..., N ineq
k ⇔ λjk ≥ 0 (2b)

nonnegativity: λji,¬k ≥ 0, i = 1, ..., N ineq
¬k ⇔ λj¬k ≥ 0 (2c)

Complementary λjk � gk(ξloc
j ) = 0 (2d)

slackness: λj¬k � g¬k(ξloc
j , θ) = 0 (2e)

Stationarity: ∇ξxuc(ξ
loc
j ) + λjk

>∇ξxugk(ξloc
j )

+ λj¬k
>∇ξxug¬k(ξloc

j , θ) (2f)
+ νjk

>∇ξxuhk(ξloc
j ) = 0

where∇ξxu(·) takes the gradient with respect to a flattened ξxu
and � is elementwise multiplication. We denote the vectorized
multipliers as λjk ∈ RN

ineq
k , λj¬k ∈ RN

ineq
¬k , and νjk ∈ RN

eq
k .

Quantities unknown to the learner are in blue. Intuitively, (2a)
enforces that ξloc

j is feasible for Prob. 1 (it is in the safe set
S(θ) and satisfies the known constraints), that the multipliers
are zero unless the corresponding constraints are active (2b)-
(2e), and that its cost cannot be locally improved (2f).



B. Overview of Gaussian processes
A GP is defined as a set of (potentially infinitely many)

random variables, any finite number of which have a joint
Gaussian distribution [19]. It is fully parameterized by a
mean function m(x) and a covariance function k(x, x′). In
regression, GPs are often used as the prior distribution for an
unknown function f(x) of interest, i.e. f ∼ GP(m, k). Given
a dataset D = {(xi, yi)}ni=1, and assuming a noisy observation
model yi ∼ N (f(xi), σ

2), the predictive conditional posterior
f̃ |D is also a Gaussian if a GP is used as the prior. Performing
inference at a finite set of points {zj}kj=1, the posterior mean
and covariance evaluated at the points are given by

E[f̃(Z)|D] = k(Z,X)(k(X,X) + σ2I)−1Y , (3)

cov(f̃(Z)|D) = k(Z,Z)− k(Z,X)(k(X,X) + σ2I)−1k(X,Z), (4)

where Z, X , and Y are vectors containing all elements in
{zj}kj=1, {xj}ni=1, and {yi}ni=1, respectively [13].
C. Problem statement

Given locally-optimal demonstrations {ξjxu}Ndem
j=1 , we wish to

learn an unknown constraint S(θ) = {φ(x) | g¬k(φ(x)) ≤ θ},
where g¬k ∼ GP(m, k) is represented as a GP, that is consis-
tent with the demonstrations’ KKT conditions. Moreover, we
wish to use the learned constraint to plan probabilistically-safe
trajectories which connect novel start/goal states.

III. METHOD
Our method extracts salient information on the location and

shape of the unknown constraint from the KKT conditions
(Sec. III-A), uses this information to train a GP representation
of the constraint (Sec. III-B), and plans novel probabilistically-
safe trajectories using the learned constraint (Sec. III-C).
A. Obtaining constraint value and gradient information

For a demonstration, the KKT conditions (2) provide infor-
mation on A) if and when a constraint is tight (i.e. at which
time-steps the demonstration is touching the boundary of the
unknown constraint) via complementary slackness (2e), and B)
the shape of constraint locally around the active demonstration
points (i.e. in the form of the gradient of the constraint at
that point) via stationarity (2f). Combining both sources of
information is crucial in recovering an accurate constraint.

We first describe a method for inferring when the constraint
is tight. As shorthand, we denote sj(λ

j
k,λ

j
¬k,ν

j
k, θ) ∈ R|ξxu|

as the LHS of the stationarity condition (2f) for the jth
demonstration ξloc

j . Recall that complementary slackness (2e)
enforces that at each timestep, the Lagrange multiplier corre-
sponding to the unknown inequality constraint must be zero
unless the constraint is tight. Moreover, as any locally-optimal
trajectory ξloc must satisfy the stationarity condition (2f), we
can identify where the unknown constraint g¬k(·) must be tight
on ξloc

j by finding a stationarity residual vector ŝj of minimal
norm, under the restriction that g¬k(·) is never tight (see Fig.
1.A) and that the KKT conditions corresponding to the known
constraints are satisfied. This is achieved by solving Prob. 2,
which is a linear program (LP):

Problem 2 (Tightness identification on demonstration j).
minimize

λ
j
k
,ν
j
k

∥∥sj(λjk,0,νjk, 0)‖1

subject to (2b), (2d),

xt−1

xt+1

∇xtc(ξxu)

S(θ)c S(θ)

xt−2

1 · ∇xtg¬k(φ(xt))

xt

xt−1

xt

xt+1

∇xtc(ξxu)

S(θ)c S(θ)

0 · ∇xtg¬k(φ(xt))

xt−2

∇xt−1
c(ξxu) = 0

invalid 
gradients

(A) (B)

Fig. 1. Cartoon: demonstrator minimizes path length; system is kinematic. In
this simplified setting, we can interpret (2f) as balancing between the vectors
∇c and λ∇g¬k; if they cancel out to 0, stationarity holds. We visualize these
terms for Prob. 2-3. (A) Prob. 2: indices of s for xt can only go to zero if
λ¬k,t 6= 0; thus, we detect g¬k(xt) = θ. (B) Prob. 3: only a scaling of the
magenta gradient can make s zero; the gold gradients cannot cancel ∇c.

where the effect of the unknown constraint on the residual is
erased by zeroing out its corresponding Lagrange multipliers
and parameters. By recovering the corresponding stationarity
vector ŝj from the solution of Prob. 2, we can determine the
timesteps t̂ at which sj cannot be made zero. Note that as
the unknown constraint is time-independent, taking the form
(1), there is no trade-off between reducing the stationarity
residual corresponding to one timestep instead of another. By
the assumption that demonstration j exactly satisfies (2), sj
must be made identically zero; hence, the unknown constraint
must be tight on timesteps t̂ corresponding to nonzero entries
in ŝj , i.e. g¬k(φ(xt)) = θ for all t in t̂. In contrast, we note that
the KKT conditions do not provide information on the value
of g¬k(φ(xt)) for nontight timesteps ť

.
= {1, . . . , T} \ t̂; we

can only infer that g¬k(φ(xt)) ≤ θ for t ∈ ť.
Next, we introduce a method for obtaining a set of KKT-

consistent gradients of the unknown constraint at each timestep
where the constraint is tight. In Prob. 3, we fix the Lagrange
mutipliers λj¬k = 1, drop θ as it is removed by the gradient,
and solve for ∇ξxug¬k as a decision variable:

Problem 3 (Gradient identification on demonstration j).
minimize

λ
j
k
,ν
j
k
,∇ξxug¬k

∥∥sj(λjk,1,νjk, 0)‖1

subject to (2a)− (2e).
Fixing λj¬k is required to avoid bilinearity in Prob. 3, which
remains an LP. The returned ∇ξxug¬k are consistent with the
KKT conditions (2) (see Fig. 1.B). Note that the recovered
∇ξxug¬k from Prob. 3 are not the only consistent gradients,
because λj¬k can take values other than 1, and the resulting
λj>¬k∇ξxug¬k(ξloc

j ) can still satisfy (2f) (e.g. resulting in a
scaling of the returned gradient). We will address this non-
uniqueness in future work (see Sec. V for discussion).

B. Embedding KKT-based information in a Gaussian process
After obtaining a set of tight points {xi ∈ X}ki=1 and the

gradients of the unknown constraint at each tight point, we
can construct the following dataset D = {(xi,∇g¬k(xi)}
which we wish our learned GP to be consistent with. As
the deriviative of a GP is also a GP [20], we can form a
joint GP over the function values and their derivatives to
perform inference using value g¬k(xi) = 0 and gradient data
∇g¬k(xi). For brevity, we refer to [22] for more details.

Since the demonstrations are safe (i.e. g¬k(φ(xt)) ≤ θ
for all t), we enforce this in the learned GP by calculating
the posterior mean at every demonstration point (i.e. their
constraint values g¬k(φ(xt))) and find θ by solving Prob. 4
with these fixed constraint values, which also is an LP:
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Fig. 2. 12D quadrotor obstacle example. Demonstrations (black). (A) True
constraint (blue), novel plans using the GP constraint (gold). (B) Posterior
mean of the learned GP constraint (blue). (C) GP misclassifications compared
to the true constraint. (D) Baseline recovered constraint.

Problem 4 (θ calculation via inverse KKT).
minimize
θ,λ

j
k
,λ
j
¬k,ν

j
k

∑Ndem
j=1

∥∥sj(λjk,λj¬k,νjk, θ)‖1
subject to (2a)− (2e), ∀ξloc

j , j = 1, . . . , Ndem

C. Planning with the learned constraint
We wish to find a trajectory connecting a pair of novel

start/goal states which satisfies the learned constraint with
probability 1 − δ. We use a constrained kinodynamic RRT
[16] to plan with the learned constraint, though it can also
be used in an optimization-based planner. Given the posterior
g̃|D and a candidate state xc in the RRT, we can obtain
E[g̃¬k(φ(xc))|D] and Var(g̃¬k(φ(xc))|D). As the posterior
g̃|D is Gaussian, we can compute confidence intervals (CI)
on g̃¬k(φ(xc))|D by buffering E[g̃¬k(φ(xc))|D] by an ap-
propriate scaling of the posterior standard deviation σp

.
=√

Var(g̃¬k(φ(xc))|D) (e.g. the 95% CI is E[g̃¬k(φ(xc))|D]±
1.96σp). The probability of a plan being contained in safe set
S(θ), as defined by g¬k(·), with probability 1− δ is given by

Pr
(∧T

i=1(xi ∈ S(θ))
)
> 1− δ. (5)

We derive a sufficient condition for (5) via Boole’s inequality:∧T
i=1

(
Pr(xi ∈ S(θ)) > 1− δi

)
(6)

where δi is the probability of xi /∈ S(θ) and
∑T
i=1 δi ≤ δ.

Thus, (5) can be decomposed as a conjunction of probabilities
on each timestep of the trajectory [18], simplifying planning.

IV. EVALUATION ON A 12D QUADROTOR

We evaluate our approach on a quadrotor to show that
it scales to learn complex nonlinear constraints on high-
dimensional systems. We are provided 13 demonstrations
(Fig. 2.A, black) avoiding collisions with a treelike obstacle,
which is represented as a union of three ellipsoids (Fig. 2.A,
blue). We generate the demonstrations by solving trajectory
optimization problems using IPOPT [21]. The dynamics and
cost function used are as in [8] and [9], respectively. We wish
to recover the tree obstacle, which is unknown to the learner
and is assumed to be a function of only the position states x,
y, z (i.e. φ(x) is only a function of these states). Crucially,
we lack a priori knowledge on the structure of the constraint
g¬k(·). To train the GP, we use GPytorch [12] with an RBF
kernel and train the model with Adam [14] for 800 epochs
at learning rate 0.5. We compare with a baseline method
[9, Prob. 4] which handles unknown constraint structure by
approximating the unknown constraint as a union of B axis-
aligned boxes (as in [7, Sec. 4.4]). As B is unknown, we

iteratively add boxes to the representation until the KKT
conditions hold. Due to the complexity of the tree obstacle, B
is too high for [9, Prob. 4] to be tractably solved to optimality;
we use the best solution found within a one-hour time limit.
We sweep over B, selecting B = 10: B < 10 results in a poor
fit; B > 10 results in poor solutions found in the time limit.

We visualize our results in Fig. 2.B-C. By enforcing the
GP to be consistent with the tightness and constraint gradient
information, we learn a constraint which is visually accurate
(Fig. 2.B). The misclassifications (Fig. 2.C) are in locations
where there is a lack of tight demonstration states. This is
reasonable, as we cannot expect the GP to be accurate far
from the training data. In contrast, the baseline fails to recover
a reasonable constraint (Fig. 2.D), failing entirely to cover the
upper portion of the obstacle; moreover, the shape is highly
inaccurate due to the limitations of axis-aligned boxes. We
provide metrics on constraint accuracy in Table I by gridding
the position space x, y, z ∈ [−3, 3] × [−3, 3] × [0, 12] and
counting the percent of gridpoints which are incorrectly la-
beled safe (denoted False Safe) and incorrectly labeled unsafe
(denoted False Unsafe). The GP mean is the most accurate
when combining both metrics. Moreover, the “False Safe”
percentage can be made smaller by buffering the GP constraint
with the predictive uncertainty, though this is at the cost
of conservativeness (higher “False Unsafe”). In contrast, the
baseline incorrectly labels many more states as safe, which can
lead to safety violations in execution when planning with the
learned constraint. Finally, we plan from two novel start/goal
pairs using the 2.33σp-buffered GP constraint, yielding plans
(Fig. 2.A, gold) that are safe with probability at least 0.9 and
0.91 (according to (6)) and are ultimately safe for the true
constraint. This example suggests our method scales to com-
plex nonlinear constraints on high-dimensional systems and
requires minimal prior information on the unknown constraint.

0 σp 1 σp 2 σp 2.33 σp Baseline
False Safe (%) 1.106 0.061 0.002 0.002 16.781
False Unsafe (%) 0.481 17.149 59.661 67.649 0.386

TABLE I
GP MISCLASSIFICATIONS W.R.T. THE TRUE CONSTRAINT

V. DISCUSSION AND CONCLUSION

We learn constraints from demonstrations with minimal a
priori knowledge by leveraging both the informativeness of the
KKT conditions and the flexibility of Gaussian processes. An
evaluation on a 12D quadrotor shows that our method scales to
learn complex constraints which prior methods cannot handle.
We wish to address the following in future work:
• While our method can use approximately locally-optimal

demonstrations by thresholding the stationarity residual,
we wish to explore how different suboptimality models
[15, 23] can inform the selection of this threshold.

• As Prob. 3 only returns one possible set of KKT-
consistent gradients to train the GP, our method may
underestimate the posterior uncertainty. While our plans
remain safe in practice, we can address this by extracting
multiple consistent gradients as in [8] and training the
GP with linear constraints on the possible gradients [5].

• Boole’s inequality in (5) can be conservative; we will
study using the GP posterior to compute the LHS of (5).
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